Code: EC2T3

I B. Tech-II Semester-Regular Examinations - July 2014

NETWORK THEORY

(Electronics & Communication Engineering)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

1. a) Define Supermesh and Mesh.

7 M

b) Using Nodal analysis determine the currents in each of the branches of the following circuit.

7 M

2. a) Distinguish between planar graph and non-planar graph.

7 M

b) Explain how the Tieset matrix of a Network can be obtained.

7 M

3. a) Define Superposition theorem.

7 M

b) Use Thevenin's Theorem to determine the current through the 10Ω resistor in the following circuit. 7 M

4. a) Give the applications of Milliman's theorem.

7 M

b) Determine the load Resistance "R_L" for the transfer of maximum power and also the power at that condition.

7 M

5. a) Show that $y_{12} = y_{21}$ if the circuit is Bi-lateral.

7 M

b) Determine Z-parameters of the following circuit.

7 M

Page 2 of 3

6. a) What are complex Rectangular and polar form of representation of an alternating quantity.

7 M

b) Find the r.m.s value of the following waveform.

7 M

7. a) What are the advantages of Laplace transform.

7 M

- b) Explain the behavior of a RC circuit when the input is a step function.

 7 M
- 8. a) Define Q-factor and Bandwidth.

7 M

b) An R-L-C Series circuit has R=6.7Ω; L=0.54mH and C=6μF. Calculate the resonant frequency and current at resonance if the applied voltage is 220v.
 7 M